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Abstract
We investigate the current and the shot noise in a system composed of two quantum dots
symmetrically connected to two external leads. Within the technique of quantum rate equations,
the general expressions for the current and the shot noise are derived. It is found that, when the
energy levels of the two dots are not aligned, the interdot coupling can result in
super-Poissonian shot noise. By tuning the external magnetic flux symmetrically applied to the
system, the transition between sub-Poissonian and super-Poissonian noise can be realized. If the
distribution of the magnetic flux is inhomogeneous, the shot noise can be reduced or further
enhanced.

1. Introduction

In mesoscopic systems, owing to the discrete nature of
electrons, the current is fluctuating in time even under dc
bias. This fluctuation is called the shot noise, which is a
nonequilibrium property of the system in the sense that it is
nonzero only when there is a finite current. It characterizes
the temporal correlations between individual electron transfers
through mesoscopic systems and thus contains additional
information about the transport not contained in the average
current [1, 2]. In recent years, the shot noise has received
increased attention, since it has been proved to be a useful
tool to study the role of electron coherence and Coulomb
interaction in electron transport [3], which is one of the
main subjects in mesoscopic physics. The experimental
measurements of shot noise have already been performed
in many kinds of systems, such as superconductor [4, 5],
fractional Hall liquid [6, 7], quantum dot systems [8, 9], etc.

Totally uncorrelated current results in the so-called full or
Poissonian shot noise [10]. The transfer of electrons can be
described by Poisson statistics, and the low-frequency noise
power is S = 2eI , where e is the electron charge and I is the
average current. If additional sources of correlations between
two consecutive electron transfers are presented, the shot noise
can be enhanced or suppressed from its Poisson value. So it is
convenient to characterize the correlations by the Fano factor
F = S/2eI , which is larger (smaller) than unity when positive
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(negative) correlations exist. In most mesoscopic systems, sub-
Poissonian shot noise is observed. The negative correlations
may be exerted by Pauli exclusion, which limits the density
of electrons in phase space, or by Coulomb repulsion. Both
of the two are predicted to impose a time delay between two
consecutive electron transfers and suppress the noise [11, 12].
For example, in symmetrical double-barrier junctions the
shot noise is reduced to F = 1/2 [13, 14]. However,
in certain situations the Coulomb repulsion can also yield a
positive correlation and enhance the noise even to be super-
Poissonian. This phenomenon was first discovered in double-
barrier tunneling diode in the negative differential conductance
(NDC) regime [15–18] and a Fano factor up to 6.6 was
observed. In the NDC regime, the energy of the confined state
in the well falls below the conduction band of the electrode.
When an electron tunnels into the well, the potential energy of
the well is raised. As a consequence, the density of states in
the well is shifted upwards, and more states are available for
electron tunneling. Therefore, electrons entering the well are
positively correlated and the shot noise is enhanced. Recently,
it has been predicted that the super-Poissonian noise can also
be observed in quantum dot (QDs) systems [19–25]. In a
system composed of a two-level QD (or two QDs) coupled to
external electrodes, super-Poissonian noise can occur if the two
energy levels have different coupling strengths to the leads (for
example, QD coupled to ferromagnetic leads [24, 25]). This
is because the electrons are harder to tunnel out of the level
with weaker coupling strength, and the currents are mainly
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Figure 1. The system with two quantum dots coupled to two external
leads. The interdot coupling divides the system into two parts. An
external magnetic field threads the system and the magnetic flux
enclosed in the left (right) part of the system is denoted by �L (�R).

contributed by the transport through the strongly coupled level.
Owing to the large Coulomb repulsion, the occupation of the
weakly coupled level can modulate the current through the
strongly coupled level. Once it is occupied, transport through
the strongly coupled level is blocked and the total current is
suppressed. While it is empty, the current can flow through
the strongly coupled level. Therefore, the tunneling events
are bunched within the time interval when the weakly coupled
level is empty and the current fluctuation is enhanced. This
is the so-called dynamical channel blockade, which is the
crucial ingredient to observe super-Poissonian noise in QD
systems. Meanwhile, theoretical works pointed out that super-
Poissonian noise can also be observed in symmetrical QD
systems [26–28]. For example, two-quasiparticle scattering
results in a Fano factor up to 5/3 in the Kondo regime [26]. In
a two-level QD system, the shot noise can be tuned back and
forth between sub- and super-Poissonian character by using an
ac driving field [27].

In the present work we propose a different scheme
to generate super-Poissonian noise in a symmetrical QD
system. Furthermore, the value of the shot noise can be
easily and accurately controlled. The structure is sketched
in figure 1, where two quantum dots a and b are embedded
in an Aharonov–Bohm interferometer, which is threaded by
a magnetic flux. Such a kind of structure has already been
realized in experiments [29, 30], where the interdot coupling
can be continuously tuned in a wide range and the electron’s
phase coherence can be sustained. In the present work
only one energy level in each dot is assumed to be relevant
and the interdot Coulomb repulsion is considered. We will
show that, even if the two QDs are symmetrically coupled
to the leads, super-Poissonian noise can also be generated in
such a system, provided that the interdot coupling is taken
into account. Besides, by tuning the magnetic flux we can
realize the transition between super- and sub-Poissonian noise.
Finally, the effects of the interdot coupling in the asymmetrical
system is also studied and we find that, in different transport
regimes, the interdot coupling has quite different effects on the
shot noise.

The rest of this paper is organized as follows. In
section 2, we give the system Hamiltonian and derivations
of the expression for the shot noise within the quantum
rate equations. Numerical calculations and discussions are
presented in section 3 and conclusions are given in section 4.

2. Theoretical framework

We model the system with the Hamiltonian H = Hdot +
Hlead + HT. Here Hlead = ∑

k,α=L ,R εkαa†
kαakα describes

the two noninteracting leads, where a†
kα (akα) is the creation

(annihilation) operator for electrons in lead α with wavevector
k. The double QDs are described by Hdot = εad†

a da +εbd†
b db −

teiθ/2d†
a db − te−iθ/2d†

b da + Ud†
a dad†

b db and the tunneling
Hamiltonian between dots and leads is HT = ∑

k,α(V α
a d†

a akα+
V α

b d†
b akα) + H.c. [31–33], where V L

a = |V L
a |eiφ/4, V L

b =
|V L

b |e−iφ/4, V R
a = |V R

a |e−iφ/4 and V R
b = |V R

b |eiφ/4. For
simplicity, V α

a,b are assumed to be independent of k, and in
the symmetrical system we further assume |V L

a | = |V L
b | =

|V R
a | = |V R

b | = V . Here we have chosen the symmetric gauge
with φ = 2π(�L +�R)/�0, where �0 is the flux quantum and
�L,R are the magnetic flux penetrating the left and the right
parts of the structure, respectively. θ = 2π(�R − �L)/�0

describes the magnetic flux imbalance. εa,b are the energy
levels of the two dots, U is the interdot Coulomb repulsion
strength, t is the interdot coupling strength and d†

a,b (da,b) are
the creation (annihilation) operators for electrons in dots a and
b. The intradot Coulomb repulsion is assumed to be strong
enough that the double occupation of each dot is forbidden and
the spin degree of freedom is ignored here.

In this work we focus on the regime where the temperature
kBT is much smaller than the Coulomb repulsion strength U
and the dot–lead coupling strength � = 2π

∑
k |V |2δ(ε −

εkα) is much weaker than kBT . In the following, we
adopt the method used by Djuric et al [25] to derive the
expressions for the current and the shot noise with the aid of
quantum rate equations. In [25] the authors have studied the
transport properties of a system composed of a QD coupled
to ferromagnetic leads. It is clear that the spin-degenerate
level and the spin-flip process in their work play similar roles
to the two QD levels and the interdot coupling in our work,
respectively. However, the authors directly performed the
quantum rate equations, and the spin-flip process was taken
into account by the nondiagonal elements of the density matrix.
Such a technique is only valid when the spin-flip scattering
is weak [25, 34], so the level splitting induced by the spin-
flip scattering is absent in their work and the zero-frequency
current fluctuation is suppressed by the spin-flip scattering. In
our work, to completely take into account the effects of the
interdot coupling, we first make a unitary transformation to
diagonalize the Hamiltonian before carrying out the quantum
rate equations. Now the interdot coupling t is absorbed into
the energies of the bonding and antibonding states, and can be
of arbitrary value. Thus, the level splitting takes place and we
find the interdot coupling can even enhance the shot noise. The
transformation is performed as

(
d1

d2

)

=
(

cos βe−iθ/2 − sin β

sin β cos βeiθ/2

)(
da

db

)

,

where β = 1
2 arctan(2t/δε) with δε = εa − εb (we

assume εa � εb). Then Hdot reduces to Hdot = ε1d†
1 d1 +

ε2d†
2 d2 + Ud†

1 d1d†
2 d2, where ε1 = ε̄ + (t2 + δε2/4)1/2

and ε2 = ε̄ − (t2 + δε2/4)1/2 are the energies of the so-
called antibonding and bonding states, respectively. Here
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ε̄ = (εa + εb)/2, and d1(d
†
1 ) and d2(d

†
2 ) are the annihilation

(creation) operators for the antibonding and bonding states.
Correspondingly, the tunneling Hamiltonian is transformed to
HT = ∑

k,α(V α
1 d†

1 akα + V α
2 d†

2 akα) + H.c., where V L
1 =

V [cos βei(φ−2θ)/4 − sin βe−iφ/4], V L
2 = V [cos βei(2θ−φ)/4 +

sin βeiφ/4], V R
1 = V [cos βe−i(φ+2θ)/4 − sin βeiφ/4], and V R

2 =
V [cos βei(φ+2θ)/4 + sin βe−iφ/4].

Following the procedure developed by Dong et al [34],
we can describe the electronic transport by the quantum rate
equations dρ/dt = Mρ, where ρ = (ρ00, ρ11, ρ22, ρdd )T and

M =
⎛

⎜
⎝

−�+
1 − �+

2 �−
1 �−

2 0
�+

1 −�̃+
2 − �−

1 0 �̃−
2

�+
2 0 −�̃+

1 − �−
2 �̃−

1
0 �̃+

2 �̃+
1 −�̃−

1 − �̃−
2

⎞

⎟
⎠ .

Here ρ00 denotes the probability that the double-dot system
is empty, ρ11 (ρ22) represents the probability that state 1 (2)
is occupied by one electron and ρdd stands for the double
occupation. These four elements of the density matrix satisfy
the completeness relation ρ00 + ρ11 + ρ22 + ρdd = 1.
�±

i = ∑
α=L ,R �α±

i = ∑
α=L ,R �α

i f ±
α (εi ) and �̃±

i =
∑

α=L ,R �̃α±
i = ∑

α=L ,R �α
i f ±

α (εi + U) (i = 1, 2), where
f +
α (ω) = fα(ω) and f −

α (ω) = 1 − fα(ω). fα(ω) =
[1 + e(ω−μα)/kBT ]−1 is the Fermi distribution function of lead
α, where μα is the Fermi level. Here we take the equilibrium
Fermi level as the energy reference and assume the bias is
symmetrically applied between source and drain, i.e. μL =
−μR = eV/2. �α

i = 2π
∑

k |V α
i |2δ(ε − εkα) are the

effective coupling strengths between lead α and state i , and
can be explicitly expressed as �L

1 = �(1 − sin 2β cos φ−θ

2 ),
�L

2 = �(1 + sin 2β cos φ−θ

2 ), �R
1 = �(1 − sin 2β cos φ+θ

2 ) and
�R

2 = �(1 + sin 2β cos φ+θ

2 ). Clearly they satisfy the relation
�α

1 + �α
2 = 2�. The steady state solution of the density matrix

can be solved from Mρ(0) = 0 and the current through lead α

is Iα = e/h
∑

n[�̂αρ(0)]n, where

�̂α = ±
⎛

⎜
⎝

0 −�α−
1 −�α−

2 0
�α+

1 0 0 −�̃α−
2

�α+
2 0 0 −�̃α−

1
0 �̃α+

2 �̃α−
1 0

⎞

⎟
⎠ .

Here + for α = L and − for α = R, and
∑

n[A]n

denotes the summation over all vector elements of A (n =
1, 2, 3, 4). The current noise spectrum is defined as
Sαα′ (ω) = 2

∫∞
−∞ dteiωt [〈Iα(t)Iα′ (0)〉 − 〈Iα〉〈Iα′ 〉]. To express

it by the system parameters we need to perform the spectral
decomposition of M: M = ∑

n λn SE (nn)S−1 = ∑
λ λPλ,

where λn are the eigenvalues of M and E (nn) is a 4 × 4 matrix
with the (n, n) element 1 and all other elements zero. Since
det(M) = 0, there will always be an eigenvalue λ1 = 0.
After the decomposition, the zero-frequency noise spectrum is
expressed as

Sαα′ (0) = δαα′ SSch − 2e2/h

×
∑

n,λ �=0

(
[�̂α Pλ�̂α′ρ(0) + �̂α′ Pλ�̂αρ(0)]n

λ

)

, (1)

where SSch = 2eI is the frequency-independent Schottky
noise.

3. Numerical results and discussions

For numerical calculations, we choose meV to be the energy
unit and set kBT = 0.05. The currents are normalized to e�/h.
First, we do not take into account the effect of the magnetic
flux. Now we have �L

i = �R
i and, for convenience, we denote

�α
i by �i with �1 = �(1 − sin 2β) and �2 = �(1 + sin 2β). In

figures 2(a) and (b) we show the variations of the current and
the Fano factor with the bias voltage in four different situations:
(a) t = δε = 0, (b) t = 0, δε �= 0, (c) t �= 0, δε �= 0
and (d) t �= 0, δε = 0. The Coulomb repulsion U is chosen
to be larger than ε1 − ε2. In case (a) the system reduces to a
symmetrical structure with two degenerate levels, and in the
I –V curve there are two steps locating at εa and εa + U .
In the zero bias limit, the noise is dominated by the thermal
noise and divergent. With the voltage increasing, the shot
noise dominates and the Fano factor reduces to unity before
the Fermi level of the left lead μL reaches the resonant level εa ,
because in this region the transport is thermally activated and
the tunneling events are uncorrelated. When the resonant level
enters the bias window, the Fano factor reduces to 5/9 [20, 35]
and equals 1/2 when μL > εa + U . In case (b) the whole
bias range is divided into four regions, and the current and
the Fano factor keep constant values in every region. Now the
current increases monotonically with the bias, while the Fano
factor depends non-monotonically on the bias and is always
smaller than unity [35]. In case (c) there are also four transport
regions. Now we have 0 < β < π/4 and �1 � �2, so
the electrons in the antibonding state can block the tunneling
through the bonding state before the Coulomb repulsion is
overcome. Thus, the current shows a negative differential
structure and the Fano factor is enhanced (later we will discuss
the formation of the NDC in detail). Finally, we turn to the
special case (d). In this case β = π/4, so we have �1 = 0 and
�2 = 2�, i.e. the antibonding state is completely decoupled
from the system. This leads to the ‘ghost Fano resonance’
in the linear conductance spectrum [31, 33, 36, 37], and the
system is equivalent to a noninteracting single-level system
with ε2 = εa − t and �2 = 2�. This situation is trivial, so
in the rest of this work we always assume δε �= 0 (although the
antibonding state can participate in transport again when the
magnetic flux is presented, it will give nothing new from the
case that δε �= 0).

Next we carefully study the effect of the interdot coupling
on the current and the shot noise. There are four transport
regions: ε2 < μL < ε1, ε1 < μL < ε2 + U , ε2 + U <

μL < ε1 + U and μL > ε1 + U , and we denote them by
i = 1, 2, 3, 4, respectively, which is shown in figure 2(c). We
keep ε1 and ε2 to be positive, so μR is below all the energy
levels. With t/δε increasing, �2 increases and �1 decreases,
and the current increases monotonically in regions 1 and 3,
since in both regions the current is mainly contributed by the
transport through the bonding state. We can also see the shift
of the energies of the bonding and antibonding states, which
results in the shrinking of region 2 and the expansion of both
regions 1 and 3. For a large enough t/δε, the current no longer
increases monotonically with the bias and the NDC appears
when the bias enters region 2, which stems from the partial
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Figure 2. The current and Fano factor versus bias. In (a) and (b) the solid, dashed, dashed–dotted and dotted lines correspond to the cases
(a) t = δε = 0, (b) t = 0, δε = 1, (c) t = 0.3, δε = 1 and (d) t = 0.3, δε = 0, respectively. In (c) and (d) we assume εa = 1 and εb = 2, and
the four lines correspond to t = 0, 0.1, 0.3 and 0.5, respectively. In the inset we show the Fano factor as a function of t/δε at bias voltage
eV = 5.5. U = 2.5 is assumed in all figures.

blockade of the first electronic channel (bonding state) by the
second one (antibonding state) [20, 22]: since now �1 �
�2, when the second channel opens, the electrons have much
longer dwell time in the antibonding state than in the bonding
state. If the antibonding state is occupied, transport through
the bonding state is quenched, for the simultaneous occupation
of both states is energetically forbidden in the considered bias
range. Consequently, the transport through the antibonding
state modulates the transport through the bonding state and
leads to the NDC at μL = ε1. In region 3 the Coulomb
repulsion is overcome by the bias voltage and the transport
through the bonding state is no longer blocked, so the current
increases with the bias again. Different from the current, the
Fano factor keeps a constant value 0.5 in regions 1 and 4,
because in both regions the transport properties of the system
resemble those of a symmetrical noninteracting system. In
region 2, the Fano factor increases with t/δε increasing, and
finally becomes super-Poissonian, which is explicitly shown
in the inset. Thus, the super-Poissonian noise can also be
generated in a symmetrical structure, if the energy levels of the
two dots are mismatched and the interdot coupling is strong

enough. In this case the NDC and the super-Poissonian noise
are both generated by dynamical channel blockade, and have
been studied in several previous works [20, 22]. However,
the NDC and the super-Poissonian noise do not always appear
together, as we will see below. Here the occupation of the
antibonding state can modulate the current through the bonding
state and leads to an effective bunching of tunneling events and,
consequently, to the super-Poissonian shot noise. With t/δε
increasing, �1/�2 decreases and the bunching gets stronger, so
the Fano factor increases. In region 3 the shot noise is always
sub-Poissonian, since now the tunneling via the bonding state
is no longer blocked.

Now we investigate the effect of the magnetic field. Two
situations are considered here: the distribution of the magnetic
flux is homogeneous or inhomogeneous. In the first case we
have φL = φR (or θ = 0), so �L

i = �R
i still holds. We also

denote �α
i by �i with �1 = �(1 − sin 2β cos φ

2 ) and �2 =
�(1 + sin 2β cos φ

2 ). Since the effective coupling strengths
are magnetic-flux-dependent, we expect the transition between
super- and sub-Poissonian noise can be realized by tuning the
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Figure 3. The current and the Fano factor versus bias. In (a) and (b) the solid, dashed, dashed–dotted and dotted lines correspond to φ = π/4,
π/2, 3π/4 and π , while in (c) and (d) they correspond to φ = 5π/4, 3π/2, 7π/4 and 2π , respectively. εa = 1, εb = 2, t = 0.5 and U = 2.5
are assumed in all figures. In the insets of (c) and (d) we show the φ dependence of the Fano factor in regions 2 and 3, where the solid, dashed
and dotted lines correspond to t = 0.2, 0.35 and 0.5, respectively.

magnetic flux. Figure 3 shows the variations of the current
and the Fano factor with bias voltage for different φ. To see it
clearly, in figures 3(a) and (b) we plot the case for 0 < φ � π

and in figures 3(c) and (d) π < φ � 2π . When φ is small,
�1 is much smaller than �2 (according to our parameters,
sin 2β ≈ 0.707, and �1/�2 ≈ 0.172 for φ = 0), thus we
again obtain the NDC at the bias voltage μL = ε1 and the
super-Poissonian noise in region 2. As φ increases from 0 to
π , �1/�2 increases to 1. Since the transport properties mainly
depend on the ratio �1/�2, the features of figures 3(a) and (b)
are similar to figures 2(c) and (d) except for the absence of the
shift of energy levels, and we do not discuss them anymore.
When π < φ � 2π , �1 is larger than �2. With φ increasing,
the current in regions 1 and 3 keeps decreasing, and the NDC
transfers from μL = ε1 to ε2 + U . This is because in region
3 a new transport channel at ε2 + U opens, which increases
the possibility that electrons reside in the bonding state. Thus,
the transport through the antibonding state is further blocked
and the current is suppressed. Therefore, we expect super-
Poissonian noise can also appear in region 3. This can be
seen in figure 3(d), where the behaviors of the Fano factor

are much different from the case when 0 < φ � π . Now
both in regions 2 and 3 the Fano factor increases with φ and its
value is even higher in region 3 than that in region 2. Thus, the
super-Poissonian noise can be first observed in region 3, which
means that we can tune the magnetic flux to change the bias
range where the super-Poissonian noise appears (from region
2 to region 3). We also note that there is no NDC when the
bias enters region 2 for φ > π , while super-Poissonian noise
can still happen in region 2 when φ approaches 2π . This can
be understood as follows. In this region the dynamical channel
blockade exists (the bonding state is the weakly coupled state
while the antibonding state is the strongly coupled one), so the
super-Poissonian noise appears. However, since the bonding
state opens first, when the antibonding state opens in region
2, the current keeps increasing and no NDC appears. Thus,
we also come to the conclusion that the super-Poissonian noise
is related to the dynamical channel blockade rather than the
NDC [38, 39].

The behaviors of the Fano factor can be understood as
follows. When �1 > �2, in region 2 the case is just
the opposite to that when �1 < �2. Now electrons have
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longer dwell time in the bonding state, which gives rise to
the bunching of tunneling events through the antibonding
state. However, in both situations the results are the same:
when the discrepancy between �1 and �2 is large enough,
super-Poissonian noise appears in this region. The situation
is completely different in region 3, where a new channel at
ε2 + U opens and the transport through the bonding state
can no longer be blocked. If the bonding state has stronger
coupling (�1 < �2), no bunching happens in transport and the
shot noise is sub-Poissonian. In contrast, if the antibonding
state has stronger coupling (�1 > �2), the electron on the
bonding state will result in the bunching of tunneling through
the antibonding state and the shot noise can be enhanced to be
super-Poissonian. So when 0 < φ � π the super-Poissonian
noise only emerges in region 2, while when π < φ � 2π

it can emerge in both regions 2 and 3. Besides, owing to the
opening of the new tunneling channel, in region 3 electrons
have larger probability to reside in the bonding state than that in
region 2. As a consequence, the bunching of transport through
the antibonding state is further enhanced and the Fano factor is
larger than that in region 2 when π < φ � 2π . This can be
seen more explicitly in the insets in figures 3(c) and (d), where
we show the Fano factor as a function of φ for several values
of t/δε in regions 2 and 3, respectively. As we expect, the
Fano factor in region 2 is symmetrical with respect to φ = π ,
while in region 3 it increases monotonically with φ. When
φ > π , in region 3 the Fano factor is always larger than that
in region 2. Besides, with t/δε decreasing, the modulation
of the Fano factor by the magnetic flux is weakened. When
t/δε reduces to a critical value, the shot noise can no longer
be enhanced to be super-Poissonian by tuning the magnetic
flux. This is because, when sin 2β is small, we cannot obtain
a large enough asymmetrical ratio �1(2)/�2(1) to induce strong
bunching of tunneling events. Thus, the critical value of t/δε is
an important parameter and we will evaluate it in the following.

Since the Fano factor is larger in region 3 than that in
region 2 for φ > π , the critical value of t/δε should be smaller
in region 3. To confirm this point, we require the expressions
of the physical quantities in every region. Under the conditions
�L

i = �R
i = �i and �1 + �2 = 2�, the eigenvalues of M are

λ1 = 0, λ2 = −4� and λ3,4 = −2� ± (4�2 − γ 2), where
γ = �+

1 �−
2 + �−

1 �+
2 + �−

1 �−
2 + �̃+

1 �̃+
2 + �̃+

1 �̃−
2 + �̃−

1 �̃+
2 −

�−
1 �̃+

2 − �−
2 �̃+

1 . After some algebra we obtain the analytic
expressions for the current, the shot noise and the Fano factor
in every region, which are given in table 1. For convenience,
we define χ = �1/�2. From the expressions for the current
we know that the NDC can happen at μL = ε1 if χ < 1/2, or
at μL = ε2 + U if χ > 2, which has already been revealed in
figure 3. To observe super-Poissonian noise in region 2, χ (or
1/χ ) must be larger than 2+√

3 ≈ 3.73 and the corresponding
t/δε is 0.354, while in region 3 the critical value is χ ≈ 3.06
and t/δε ≈ 0.295. So it is easier to generate super-Poissonian
noise in region 3, where a weaker interdot coupling is required.
Besides, in region 2 the values of the current and the shot noise
remain unchanged with respect to the interchange of �1 and
�2. The Fano factor increases monotonically with χ when
χ > 1 and diverges when χ → ∞ or 0. When χ = 1,
F reduces to its minimal value 5/9. In region 3, the Fano

Table 1. The analytical results of the current, the shot noise and the
Fano factor in different bias regions.

Region 1 2 3 4

I (e/h) �2
2

�1+�2
3

�1+2�2
4

�1+�2
2

S(e2/h) �2
2

2(2�3
1+3�2

1�2+3�1�2
2+2�3

2)

27�1�2

�3
1+3�2

1�2+7�1�2
2+4�3

2
8�2(�1+�2)

�1+�2
2

F 1
2

2�3
1+3�2

1�2+3�1�2
2+2�3

2
9�1�2(�1+�2)

�3
1+3�2

1�2+7�1�2
2+4�3

2
4�2(�1+�2)(�1+2�2)

1
2

factor increases monotonically with χ and also diverges when
χ → ∞. When χ → 0, it reduces to its minimal value 1/2,
since now the antibonding state has little effect on the transport
and the system resembles a single-level noninteracting system.

In the above discussions the left–right symmetry of
the system is preserved, even when the magnetic field is
applied. However, if the distribution of the magnetic flux
is inhomogeneous (θ �= 0), the symmetry is broken, which
can be clearly seen from the expressions of �α

i . At this time
�L

i �= �R
i and the systematical investigation of shot noise in

such a kind of completely asymmetrical structure is lacking.
Now in regions 1 and 4 the Fano factor does not keep 1/2
anymore [35]. In the following, we focus on the shot noise in
region 2 and we can see that the inhomogeneous distribution
of the flux has significant influences on the generation and
modulation of the super-Poissonian noise. In figure 4(a) we
plot the Fano factor in region 2 as a function of φ for several
values of θ . t/δε is set to be 0.5, which is larger than the
critical value in region 2. When θ = 0, the transition between
sub- and super-Poissonian noise can be realized by tuning the
total magnetic flux. This also holds if θ is small. However,
if θ is around π , the shot noise is much more insensitive to
the flux and is always sub-Poissonian. This can also be seen
in figure 4(c), where we show the Fano factor in region 2 as
a function of φ and θ for t/δε = 0.5 (since the coupling
strengths remain unchanged under the interchange of φ and θ ,
this figure is symmetrical with respect to the line θ = φ). We
can understand it as follows. Taking θ = π for example. Then
the coupling strengths are �L

1 = �R
2 = �(1 − sin 2β sin φ

2 )

and �L
2 = �R

1 = �(1 + sin 2β sin φ

2 ). Thus, this situation is
similar to that of a QD connected to two ferromagnetic leads
with antiparallel aligned magnetizations. In such a structure,
the spin-up electrons dominate in the transport and make the
noise sub-Poissonian, which has already been studied by Braun
et al [24]. In our system, the bonding state, which is strongly
coupled to the source lead and weakly coupled to the drain
lead (�L

2 > �R
2 ), plays the similar role of the spin-up state in

their work. Therefore, the shot noise is always sub-Poissonian
when θ is about π . To obtain analytical results of the Fano
factor, we resort equation (1) once more. Under the condition
�L

2 = 2� − �L
1 and �R

2 = 2� − �R
1 , we obtain

F = (�R
1 )4 − 4�(�R

1 )3 + (�R
1 )2[8�2 + 8��L

1 − 4(�L
1 )2]

− 8�R
1 [3�2�L

1 − �(�L
1 )2] + 4�2�L

1 (4� − �L
1 )

× {[(�R
1 )2 − 4��R

1 + 2�L
1 �R

1 − 2��L
1 ]2}−1. (2)

When θ = π , we have �R
1 = 2�−�L

1 and F = [4�2+2��L
1 −

(�L
1 )2][4�2 − 6��L

1 + 3(�L
1 )2]/[4�2 − 2��L

1 + (�L
1 )2]2. It

is easy to see that F is always smaller than 1, and approaches
1 when �L

1 → 0 or 2�. So when θ = π , we cannot generate
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Figure 4. The Fano factor as a function of φ for (a) t/δε = 0.5 and (b) t/δε = 0.35 when the bias is in region 2. In (c) and (d) we show the
Fano factor as a function of φ and θ for t/δε = 0.5 and 0.35, respectively.

(This figure is in colour only in the electronic version)

super-Poissonian noise in the symmetrical system, even if t/δε
exceeds the critical value.

In figure 4(a) we can also see that, for a fixed θ , the
Fano factor reaches its maximum when θ + φ ≈ 2π . We
have already known that, when the distribution of the flux
is homogeneous, the Fano factor reaches its maximum when
φ = 2π (or φ = 0), which can be viewed as a special case for
θ = 0. It is displayed more explicitly in figure 4(c) that, around
the line θ + φ = 2π , the Fano factor is always larger than
that when θ = 0. So the shot noise can be further enhanced
when the distribution of the magnetic flux is inhomogeneous,
and we expect that, even when t/δε does not reach the critical
value, we can also obtain super-Poissonian noise by applying
an inhomogeneous magnetic flux. To verify it we plot in
figure 4(b) the variation of F with φ, where the parameters
are the same as those in figure 4(a) except for t/δε = 0.35.
Since the critical value of t/δε is 0.354 in region 2, the shot
noise is always sub-Poissonian if the flux is homogeneous.
However, when the flux is inhomogeneous, super-Poissonian
noise appears in this region again when θ + φ ≈ 2π and
|φ − θ | > π , as revealed in this figure. This can be understood

by the following considerations. If θ = 0, the Fano factor
reaches its maximum when φ = 0 (or φ = 2π ). Now
�L

1 = �R
1 = �(1 − sin 2β) < �L

2 = �R
2 = �(1 + sin 2β) and

the weakly coupled antibonding state enhances the bunching of
tunneling events through the bonding state. When θ �= 0 and
θ + φ = 2π , we have �L

1 = �(1 + sin 2β cos θ), �R
1 = �(1 +

sin 2β), �L
2 = �(1 − sin 2β cos θ) and �R

2 = �(1 − sin 2β).
Since in region 2 the transport properties are not affected by the
interchange of the roles of the bonding and antibonding states,
the system is equivalent to the one with coupling strengths
�L

1 = �(1 − sin 2β cos θ), �R
1 = �(1 − sin 2β), �L

2 =
�(1 + sin 2β cos θ) and �R

2 = �(1 + sin 2β). Compared with
the case θ = 0, �R

1 and �R
2 are not changed. When θ increases

from 0 to π , �L
1 increases while �L

2 decreases, which enhances
the probability that the electrons reside in the antibonding state.
Thus, the bunching of transport through the bonding state is
further enhanced. When θ is small, the Fano factor is also
enhanced, but when θ is large, F begins to decrease with θ ,
because now �L

2 is small and the current through the bonding
state is much smaller than that when θ is small. In particular,
when θ = π , the shot noise is sub-Poissonian, which has

7
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already been studied by us. So for a fixed t/δε, F should reach
its maximum when θ + φ ≈ 2π and θ equals a certain value
in the region (0, π) (or (π, 2π)). This can be clearly seen in
figure 4(d), where t/δε = 0.35, and other parameters are the
same as those in figure 4(c). The maximum happens when
θ + φ ≈ 2π and |φ − θ | > π . To obtain the analytical results
we turn to equation (2). Substituting the expressions of the
coupling strengths into this formula, we obtain

F =
{[

5 + sin2 2β cos
φ + θ

2
(

cos
φ + θ

2
+ 2 cos

φ − θ

2

)]

×
[
1 + sin2 2β cos

φ + θ

2

×
(

cos
φ + θ

2
− 2 cos

φ − θ

2

)]}

×
{[

3 − sin2 2β cos
φ + θ

2

×
(

cos
φ + θ

2
+ 2 cos

φ − θ

2

)]2}−1
.

(3)

Then we can find for a fixed t/δε that F reaches its maximal
value Fmax = (16 − 8 cos2 2β + cos4 2β)/(16 cos2 2β)

when θ + φ = 2π (or �R = �0/2) and |φ − θ | =
2 cos−1[(1 − sin4 2β − 8 sin2 2β)/(10 sin2 2β − 2 sin4 2β)],
which is consistent with our previous analysis. For t/δε =
0.35, Fmax ≈ 1.032 when φ ≈ 1.691π and θ ≈ 0.309π (or
φ ≈ 0.309π and θ ≈ 1.691π ). By assuming Fmax = 1,
we find the reduced critical value t/δε ≈ 0.338. So we
see again that the inhomogeneous distribution of the magnetic
flux makes the generation of the super-Poissonian noise easier.
The corresponding behaviors of the shot noise in region 3 are
similar, so we do not discuss them here anymore.

In some of the previous studies on the similar structure, it
has been pointed out that the conductance is a periodic function
of φ with period 4π [32, 40, 41], since the conductance
depends on the coupling strengths, and when φ changes 4π ,
the coupling strengths return to their original values. This is
valid if φ and θ varies independently. However, if φ/θ =
(n + 1)/(n − 1) (or �R/�L = n) is kept, the period changes
to 2(n + 1)π [32, 41]. The Fano factor is also determined
by the coupling strengths and the transport regimes, so we
expect to observe similar oscillations of the Fano factor. In
figures 5(a) and (b) we show the oscillations of the Fano factor
in regions 2 and 3, respectively. In figure 5(a) we see that,
for different values of φ/θ , the shot noise can be enhanced to
super-Poissonian noise for different times in one period. This
can also be seen in figure 4(c). Besides, for φ/θ = 1, 0.5 and
2, the periods should be 2π , 4π and 8π , respectively, while
in figure 5(a), different from our expectation, the periods are
2π , 2π and 4π . The reason is that in region 2 the shot noise is
not affected by the interchange of the role of the bonding and
antibonding states. For φ/θ = 0.5, when φ = 2π , the values
of �α

1 and �α
2 just interchange, so the Fano factor remains

unchanged. In region 3 this symmetry does not hold, so we
can observe in figure 5(b) the expected oscillations of the Fano
factor with periods 2π , 4π and 8π .

In our previous calculations we always assume U > ε1 −
ε2, so the double occupation is forbidden for a low bias. Here
we briefly examine the case U < ε1 −ε2, and only consider the
homogeneous distribution of the magnetic flux. In figure 5(c)
the Fano factor as a function of the bias voltage for different
φ is shown and the corresponding situation for the current is
shown in the inset. Now there are only three steps in the
I –V or F − V curves located at ε1, ε2 and ε2 + U . As φ

increases, �1 increases, accompanied by the decrease of �2,
and I decreases in both regions, which is similar to the case
when U > ε1 − ε2. This is because, for ε1 < μL < ε2,
only the bonding state contributes to the current, and for ε2 <

μL < ε2 + U the decrease of �2 enhances the blockade of
transport through the antibonding state. The behavior of the
shot noise is quite different from the case when U > ε1 − ε2.
If the magnetic flux is absent, we cannot generate super-
Poissonian noise by increasing the interdot coupling strength,
because now �2 > �1 and the transport through the bonding
state cannot be blocked by the electrons in the antibonding
state. When the magnetic flux increases, �1 increases while �2

decreases, and finally leads to the blockade of transport through
the antibonding state. Thus, when φ approaches π , super-
Poissonian noise appears for ε2 < μL < ε2 + U , as revealed
in figure 5(c). So we conclude that, even when U < ε1 − ε2,
we can still obtain super-Poissonian noise in the symmetrical
system by the interplay between the interdot coupling and the
magnetic flux.

We have carefully studied how super-Poissonian noise
can be generated in the symmetrical system via the interdot
coupling (or the interplay between the interdot coupling and
the magnetic flux). At last we simply demonstrate the effect
of the interdot coupling in an asymmetrical system, where
the two dots have different coupling strengths to the leads.
Dot a is assumed to be more strongly coupled to the leads,
i.e. �a > �b. According to our previous discussions,
the shot noise can be enhanced to be super-Poissonian in
regions 2 and 3 for large enough �a/�b. If the interdot
coupling is considered, it is expected that the noise will be
suppressed, since the interdot coupling makes it possible that
an electron trapped in dot b can tunnel to dot a and then to
the lead, and consequently reduces the blockade. This has
been pointed out by Djuric et al [25], where the spin-flip
scattering plays the similar role to the interdot coupling in
the present work. However, in their work the strength of the
spin-flip scattering must be very small. As we have stated
before, when the strength of the interdot coupling is large,
it can result in some other effects, such as the level splitting
and the renormalization of the coupling strengths. So it is
necessary to check if the interdot coupling has other effects
on the shot noise in the asymmetrical system. Here we would
like to give some analysis before presenting the numerical
results. After performing the same unitary transformation, the
coupling strengths of the antibonding and bonding states are
obtained as �1 = �a cos2 β + �b sin2 β − √

�a�b sin 2β and
�2 = �a sin2 β + �b cos2 β + √

�a�b sin 2β . To simplify
the two expressions we define sin ϕ = √

�a/
√

�a + �b and
cos ϕ = √

�b/
√

�a + �b. Clearly π/4 < ϕ < π/2, and
�1,2 can be expressed as �1 = (�a + �b) sin2(ϕ − β) and
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Figure 5. The flux dependence of the Fano factor in (a) region 2 and (b) region 3 for different values of φ/θ . t/δε = 0.5. In (c) we show the
Fano factor versus bias voltage for U < ε1 − ε2. εa = 1, εb = 2, t = 0.5 and U = 1. The inset shows the corresponding situation for the
current, where the solid, dashed and dotted lines corresponded to φ = 0, π and 2π , respectively. The Fano factor as a function of β in
asymmetrical systems is shown in (d).

�2 = (�a + �b) cos2(ϕ − β). Since 0 < β < π/4,
�1/�2 = tan2(ϕ − β) decreases with β increasing. So in
region 3 the Fano factor is always suppressed by the interdot
coupling. The situation is different in region 2. With t/δε
increasing, �1/�2 decreases to 1 when ϕ − β = π/4. This
can always be achieved, since π/4 < ϕ < π/2 and β can
approach π/4 for large enough t/δε. In this process F keeps
decreasing. For further increasing t/δε, �1 is smaller than
�2 and the Fano factor begins to increases with t/δε. So in
region 2 the Fano factor depends non-monotonically on t/δε.
In figure 5(d) we plot the Fano factor in several asymmetrical
systems as a function of β . As we expected, in region 3 the
Fano factor decreases monotonically with β , while in region 2
the Fano factor first decreases and then increases with β . For
large enough t/δε, the Fano factor can be even larger than its
original value, i.e. cos(ϕ−π/4)/ sin(ϕ−π/4) > sin ϕ/ cos ϕ.
This happens if ϕ < 3π/8 or �a/�b < 5.828. So in different
transport regimes the interdot coupling has different effects on
the shot noise in the asymmetrical system.

4. Summary

In summary, we have studied the effects of the interdot
coupling and the magnetic flux in a symmetrical double QD
system. The interdot coupling induces the renormalization of
the coupling strengths between dots and leads, thus generating
super-Poissonian noise in certain bias ranges. Since the
coupling strengths are flux-dependent, the magnetic flux can
be utilized to accurately tune the value of the shot noise and
change the bias range where super-Poissonian noise appears. If
the distribution of the magnetic flux is inhomogeneous, the shot
noise can be reduced or further enhanced. In the asymmetrical
system, the interdot coupling can enhance or suppress the shot
noise, which depends on the bias range.

Acknowledgments

This project was supported by the National Natural Science
Foundation of China (no. 10774083), the Specialized Research
Fund for the Doctoral Program of Higher Education (no.
2006003047) and the 973 Program (no. 2006CB605105).

9



J. Phys.: Condens. Matter 20 (2008) 365206 L Qin and Y Guo

References

[1] Hershfield S 1992 Phys. Rev. B 46 7061
[2] Ding G H and Ng T K 1997 Phys. Rev. B 56 15521(R)
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